| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     |                                                                        |                |
|              |                     |                                                                        |                |

# Deformed algebra and the effective dynamics of the interior of black holes

#### Wilfredo Yupanqui Carpio

División de Ciencias e Ingenierías-Universidad de Guanajuato Campus León

November 12, 2022



| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     |                                                                        |                |
|              |                     |                                                                        |                |
|              |                     |                                                                        |                |

### Contents

1 Introduction

2 Classical solutions

3 Effective dynamics inspired by Generalized Uncertainty Principle (GUP)

#### 4 Final comments



| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
| 000          |                     |                                                                        |                |
|              |                     |                                                                        |                |

# Introduction



| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
| 000          |                     |                                                                        |                |
|              |                     |                                                                        |                |

## Introduction

The standard expression of the metric of Schwarzschild black hole in terms of spherical coordinates is given by

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$
(1)

this is a vacuum solution from Einstein field equations. The black hole singularity corresponds to r = 0 and the event horizon corresponds to r = 2GM. Inside the horizon, the temporal and radial coordinates flip roles, then, the metric of the Schwarzschild interior now reads as the form of

$$ds^{2} = -\left(\frac{2GM}{t} - 1\right)^{-1} dt^{2} + \left(\frac{2GM}{t} - 1\right) dx^{2} + t^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right), \quad (2)$$

with  $t \in (0, 2GM)$  and  $r \in (-\infty, \infty)$ , and M is the mass of the black hole. Here, the metric coefficients become infinite at t = 0 and t = 2GM. In Schwarzschild metric, an invariant used to find the true singularities of a spacetime is the Kretschmann scalar

$$\mathcal{K} = \mathcal{R}^{\mu\nu\alpha\beta}\mathcal{R}_{\mu\nu\alpha\beta} = \frac{48G^2M^2}{t^6} \tag{3}$$

At t = 0 the Kretschmann scalar diverges, then, this point represent an honest singularity of spacetime. In t = 2GM none of the curvature invariants blows up there are the theory of the transformation of the curvature invariants blows up there are the transformation of the curvature invariants blows up there are the transformation of the curvature invariants blows up there are the transformation of the curvature invariants blows up there are the transformation of the curvature invariants blows up there are the transformation of the curvature invariants blows up there are the transformation of the curvature invariants blows up there are the transformation of the curvature invariants blows up there are the transformation of the transfo

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
| 000          | 00000               | 000000000000                                                           | 0000           |
|              |                     |                                                                        |                |

The Schwarzschild interior metric can be written in terms of Ashtekar variables:

$$ds^{2} = -N^{2}dt^{2} + \frac{p_{b}^{2}}{L_{0}^{2}|\rho_{c}|}dx^{2} + |\rho_{c}|(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
(4)

This metric is a special case of a Kantowski-Sachs cosmological spacetime. From here, we conclude that

$$\frac{p_b^2}{L_0^2|p_c|} = \left(\frac{2GM}{t} - 1\right), \qquad |p_c| = t^2.$$
(5)

This means that

$$\begin{array}{ll} p_b = 0, & p_c = 4G^2 M^2, & \text{On the horizon } t = 2GM, & (6) \\ p_b \to 0, & p_c \to 0, & \text{At singularity } t = 0, & (7) \end{array}$$

and we have used the Schwarzschild lapse  $N = \left(\frac{2GM}{t} - 1\right)^{-\frac{1}{2}}$ . In these variables the Kretschammn scalar becomes

$$\mathcal{K} = \frac{12 \left(b^2 + \gamma^2\right)^2}{\gamma^4 p_c^2} \tag{8}$$

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              | 00000               |                                                                        |                |
|              |                     |                                                                        |                |

## **Classical solutions**



| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              | 00000               |                                                                        |                |
|              |                     |                                                                        |                |

The full Hamiltonian of gravity written in Ashtekar connection variables is

$$H = -\frac{N_{\rm sgn}(p_c)}{2G\gamma^2} \left[ 2bc\sqrt{|p_c|} + \left(b^2 + \gamma^2\right) \frac{p_b}{\sqrt{|p_c|}} \right],\tag{9}$$

here *b* and *c* are the connections and its conjugate momenta,  $p_b$  and  $p_c$ ), which are the densitized triad. Also,  $\gamma$  is the Barbero-Immirzi parameter. The Poisson brackets between these variables are

$$\{c, p_c\} = 2G\gamma, \qquad \{b, p_b\} = G\gamma. \tag{10}$$

In order to be able to compare the effects of GUP, we first need to have the classical dynamics. Choosing a lapse

$$N(T) = \frac{\gamma \operatorname{sgn}(p_c) \sqrt{|p_c(T)|}}{b(T)}$$
(11)

the Hamiltonian constraint (9) becomes

$$H = -\frac{1}{2G\gamma} \left[ \left( b^2 + \gamma^2 \right) \frac{p_b}{b} + 2cp_c \right].$$
 (12)

The reason for choosing the lapse (11) is that as we will see, the equations of **potion** of **s** the pair  $(c, p_c)$  decouple from those of  $(b, p_b)$ .

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              | 00000               |                                                                        |                |
|              |                     |                                                                        |                |

#### The classical Hamiltonian

The equations of motion corresponding to (12) are

$$\frac{db}{dT} = \{b, H\} = -\frac{1}{2} \left( b + \frac{\gamma^2}{b} \right), \tag{13}$$

$$\frac{dp_b}{dT} = \{p_b, H\} = \frac{p_b}{2} \left(1 - \frac{\gamma^2}{b^2}\right). \tag{14}$$

$$\frac{dc}{dT} = \{c, H\} = -2c,\tag{15}$$

$$\frac{d\rho_c}{dT} = \{\rho_c, H\} = 2\rho_c, \tag{16}$$

These equations should be supplemented by the weakly vanishing ( $\approx$  0) of the Hamiltonian constraint (12),

$$\left(b^2 + \gamma^2\right)\frac{p_b}{b} + 2cp_c \approx 0. \tag{17}$$

It is clear that  $p_c$  is the square of the radius of the infalling 2-spheres.

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              | 00000               |                                                                        |                |
|              |                     |                                                                        |                |

Thus, the solutions to the equations of motion in terms of Schwarzschild time t become

$$b(t) = \pm \gamma \sqrt{\frac{2GM}{t} - 1}, \qquad (18)$$

$$p_b(t) = lL_0 t \sqrt{\frac{2GM}{t} - 1},$$
 (19)

$$c(t) = \pm \frac{\gamma GMIL_0}{t^2},$$
(20)

$$\rho_c(t) = t^2. \tag{21}$$

The behavior of these solutions as a function of *t* is depicted in Fig. 1. From these equations or the plot, one can see that  $p_c \rightarrow 0$  as  $t \rightarrow 0$ , i.e., at the classical singularity, leading to the Riemann invariants such as the Kretschmann scalar

$$\mathcal{K} = \frac{12\left(b^2 + \gamma^2\right)^2}{\gamma^4 p_c^2}$$

all diverge, signaling the presence of a physical singularity there as expected.

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              | 00000               |                                                                        |                |
|              |                     |                                                                        |                |



Figure: The behavior of canonical variables as a function of Schwarzschild time *t*. We have chosen the positive sign for *b* and negative sign for *c*. The figure is plotted using  $\gamma = 0.5$ , M = 1, G = 1 and  $L_0 = 1$ .

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 000000000000                                                           |                |
|              |                     |                                                                        |                |

# Effective dynamics inspired by Generalized Uncertainty Principle (GUP)



| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 000000000000000000000000000000000000000                                |                |
|              |                     |                                                                        |                |
|              |                     |                                                                        |                |
|              |                     |                                                                        |                |

In one dimension the simplest generalized uncertainty relation which implies the appearance of a nonzero minimal uncertainty  $\Delta x$  in position has the form

$$\Delta x \Delta p \ge \frac{\hbar}{2} \left[ 1 + \beta \left( \Delta p \right)^2 + \gamma \right]$$
(22)

where  $\beta$  and  $\gamma$  are positive and independent of  $\Delta x$  and  $\Delta p$  (but may in general depend on the expectation values of x and p).

Now in general it is known that for any pair of observables A, B which are represented as symmetric operators on a domain of A and B the uncertainty relation

$$\Delta A \Delta B \ge \frac{\hbar}{2} \left| \langle [A, B] \rangle \right| \tag{23}$$

We consider the associative Heisenberg algebra generated by x and p obeying the commutation relation ( $\beta > 0$ )

$$[\mathbf{x},\mathbf{p}] = i\hbar \left(1 + \beta \mathbf{p}^2\right).$$
(24)

The corresponding uncertainty relation is

GUP

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 000000000000000000000000000000000000000                                |                |
|              |                     |                                                                        |                |

$$\Delta x \Delta \rho \geq \frac{\hbar}{2} \left[ 1 + \beta \left( \Delta \rho \right)^2 + \beta \langle \mathbf{p} \rangle^2 \right].$$
(25)

From here

$$\Delta \rho = \frac{\Delta x}{\hbar \beta} \pm \sqrt{\left(\frac{\Delta x}{\hbar \beta}\right)^2 - \frac{1}{\beta} - \langle \mathbf{p} \rangle^2}.$$
(26)

One reads off the minimal position uncertainty

DCI

$$\Delta x_{min}(\langle \mathbf{p} \rangle) = \hbar \sqrt{\beta} \sqrt{1 + \beta \langle \mathbf{p} \rangle^2}$$
(27)

so that the absolutely smallest uncertainty in positions has the value

$$\Delta x_0 = \hbar \sqrt{\beta}. \tag{28}$$

There is no nonvanishing minimal uncertainty in momentum.

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 000000000000                                                           |                |
|              |                     |                                                                        |                |

#### Deformation of Poisson brackets

In order to find the effective GUP-modified dynamics, we impose a minimal uncertainty in  $p_b$  and  $p_c$ , and thus we modify the classical algebra of variables. To be as general as possible, let us call the configuration variables  $q_1$ ,  $q_2$  and the momenta  $p_1$ ,  $p_2$ . In our case

$$q_1 = \frac{b}{\gamma},$$
  $q_2 = \frac{c}{\gamma},$  (29)  
 $p_1 = \frac{1}{G}p_b,$   $p_2 = \frac{1}{2G}p_c.$  (30)

Thus, we modify the algebra such that

$$\{q_1, p_1\}_{\bar{q}, p} = f(q_1, q_2), \qquad (31)$$

$$\{q_2, p_2\}_{\bar{q}, p} = g(q_1, q_2), \qquad (32)$$

Our purpose here is to impose alternative relations to (10) in order to reproduce GUP effects. For this reason, it is convenient to define a new pair of configuration variables conjugate to  $p_i$ . That is, we introduce the quantities  $\bar{q}_1$  and  $\bar{q}_2$  such that

$$\{\bar{q}_1, p_1\} = 1,$$

$$\{\bar{q}_2, p_2\} = 1.$$
(33)

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 000000000000                                                           |                |
|              |                     |                                                                        |                |

This means that pairs  $(q_1, p_1)$ , as well as  $(q_2, p_2)$ , are no longer canonically conjugate. Note that the Poisson brackets are evaluated with respect to  $\bar{q}_i, p_i$ . The quantities  $\bar{q}_i$  can then be constructed starting from (31) and (32), that is

$$\frac{\partial q_1}{\partial \bar{q}_1} = f(q_1, p_1), \qquad (35)$$

$$\frac{\partial q_2}{\partial \bar{q}_2} = g(q_2, p_2), \qquad (36)$$

whence

$$\bar{q}_{1} = \int_{q_{1(0)}}^{q_{1}} \frac{dq'_{1}}{f(q'_{1}, p_{1})},$$

$$\bar{q}_{2} = \int_{q_{2}}^{q_{2}} \frac{dq'_{2}}{q'_{2}}$$
(37)
(37)

$$\bar{q}_2 = \int_{q_{2(0)}}^{\infty} \frac{u_{q_2}}{g(q'_2, \rho_2)} \,. \tag{38}$$

In this work, we consider functions f, g such that

$$f(q_1, q_2) = f(q_1) = 1 + \beta_1 q_1^2,$$
(39)  

$$g(q_1, q_2) = g(q_2) = 1 + \beta_2 q_2^2.$$
(40)

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
| 000          | 00000               | 00000000000                                                            | 0000           |
|              |                     |                                                                        |                |

where  $\beta_1$  and  $\beta_2$  are suitable dimensional parameters. In other words, we assume that any effects due to a minimal uncertainty in  $p_1$  does not influence  $p_2$  and vice versa. Using the specific variables of our model  $(b, p_b, c, p_c)$ , the algebra (31)-(32) becomes

$$\{b, p_b\} = G\gamma \left(1 + \beta_b b^2\right), \tag{41}$$

$$\{c, p_c\} = 2G\gamma \left(1 + \beta_c c^2\right), \qquad (42)$$

where we have renamed  $\beta_1 \rightarrow \beta_b$  and  $\beta_2 \rightarrow \beta_c$ . When the modified algebra above is regarded in a quantum context, it implies a minimal uncertainty in  $p_b$  and  $p_c$ . In fact, considering the corresponding commutation relations

$$[b, p_b] = iG\gamma \left(1 + \beta_b b^2\right), \tag{43}$$

$$[c, p_c] = i2G\gamma \left(1 + \beta_c c^2\right), \qquad (44)$$

one can find the following uncertainty relations

DCI

$$\Delta b \Delta p_b \ge \frac{G\gamma}{2} \left[ 1 + \beta_b (\Delta b)^2 \right], \tag{45}$$

$$\Delta c \Delta p_c \ge G \gamma \left[ 1 + \beta_c (\Delta c)^2 \right], \tag{46}$$

which correspond to minimal uncertainties for  $p_b$  and  $p_c$  of the order of  $G\gamma_{\gamma}$  because  $2G\gamma\sqrt{\beta_c}$ , respectively. Therefore,  $\beta_b$  and  $\beta_c$  effectively define the magnitude of the magnitude of the standard effects introduced with the algebra (47)-(47).

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 000000000000                                                           |                |
|              |                     |                                                                        |                |

## Modified dynamics

In order to find the effective GUP-modified dynamics, we impose a minimal uncertainty in  $p_b$  and  $p_c$ , and thus we modify the classical algebra of variables

$$\{q_1, p_1\} = \left(1 + \beta_1 q_1^2\right), \qquad \{q_2, p_2\} = \left(1 + \beta_2 q_2^2\right), \tag{47}$$

Using this new algebra and the Hamiltonian (12), the new GUP-modified equations of motion become

$$\frac{db}{dT} = \{b, H\} = -\frac{1}{2} \left( b + \frac{\gamma^2}{b} \right) \left( 1 + \beta_b b^2 \right), \tag{48}$$

$$\frac{dp_b}{dT} = \{p_b, H\} = \frac{p_b}{2} \left(1 - \frac{\gamma^2}{b^2}\right) \left(1 + \beta_b b^2\right),\tag{49}$$

$$\frac{dc}{dT} = \{c, H\} = -2c\left(1 + \beta_c c^2\right),\tag{50}$$

$$\frac{dp_c}{dT} = \{b, H\} = 2p_c \left(1 + \beta_c c^2\right).$$
(51)

UNIVERSIDAD DE GUANAJUATO Campus León División de Ciencias e Ingeniería

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 0000000000000                                                          |                |
|              |                     |                                                                        |                |

$$b(t) = \pm \frac{\gamma \sqrt{2GMt^{\beta_{b}\gamma^{2}} - t (2\gamma^{2}GM)^{\beta_{b}\gamma^{2}}}}{\sqrt{t (2\gamma^{2}GM)^{\beta_{b}\gamma^{2}} - 2\beta_{b}\gamma^{2}GMt^{\beta_{b}\gamma^{2}}}},$$

$$p_{b}(t) = \frac{\ell_{c}}{\sqrt{-\beta_{c}}} t^{-\beta_{b}\gamma^{2}} \sqrt{\left[2GMt^{\beta_{b}\gamma^{2}} - t (2\gamma^{2}GM)^{\beta_{b}\gamma^{2}}\right] \left[t (2\gamma^{2}GM)^{\beta_{b}\gamma^{2}} - 2\beta_{b}\gamma^{2}GMt^{\beta_{b}\gamma^{2}}\right]},$$
(52)
(53)

$$c(t) = \mp \frac{\ell_c}{\sqrt{-\beta_c}} \frac{\gamma GM}{\sqrt{t^4 + \ell_c^2 \gamma^2 G^2 M^2}},$$
(54)

$$\rho_c(t) = \sqrt{t^4 + \ell_c^2 \gamma^2 G^2 M^2}.$$
(55)

The behavior of these solutions is depicted in figures below.







| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 0000000000000                                                          |                |
|              |                     |                                                                        |                |



Wilfredo Yupanqui Carpio

UNIVERSIDAD DE GUANAJUATO

Campus León División de Ciencias e Ingenierías

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 00000000000000                                                         |                |
|              |                     |                                                                        |                |





UNIVERSIDAD DE GUANAJUATO

División de Ciencias e Ingeniería

Wilfredo Yupanqui Carpio

## Minimum value of $p_c$ , comparison to LQG, and the value of $\ell_c$

From (55), one can see that the minimum value of  $p_c$  happens at t = 0 for which  $p_c$  becomes

$$p_c^{\rm min-GUP} = \gamma GM\ell_c. \tag{56}$$

It is seen that two free parameters contribute to such a minimum value: the LQG Barbero-Immirzi parameter  $\gamma$  and the GUP minimal length scale  $\ell_c$ . Hence the existence of such a minimum  $p_c$  is purely quantum gravitational, due to the dependence on the mentioned parameters. We can go further and compare this minimum value with the value derived in the framework of LQG. There, the minimum value of  $p_c$  for LQG was found to be

$$p_c^{\rm min-LQG} = \gamma GM \sqrt{\Delta}, \tag{57}$$

where  $\Delta$  is the minimum of the area in LQG which is proportional to the Planck length squared  $\ell_{\rho}^2$ . If one identifies  $\rho_c^{\min-GUP} = \rho_c^{\min-LQG}$ , then one would obtain

$$\ell_c^2 = \Delta. \tag{58}$$

Assuming such an identification, one can even go further and derive a relation between  $\beta_c$  and  $\mu_c$ , the polymer parameter associated to the radial direction in LQG.

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     | 000000000000000                                                        |                |
|              |                     |                                                                        |                |

$$\mu_c = \frac{\sqrt{\Delta}}{L_0},\tag{59}$$

one can deduce

$$-\beta_c = \mu_c^2. \tag{60}$$

The above value of  $\ell_c^2 \propto \ell_p^2$  is quite small as expected and consequently one can conclude that the effective corrections kick in very close to the singularity and become dominant in that region, while for the majority of the interior the behavior mimics the classical solutions.



| 000 000000 00000 <b>00000</b> 00000 00000 00000 00000000 | Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|----------------------------------------------------------|--------------|---------------------|------------------------------------------------------------------------|----------------|
|                                                          | 000          | 00000               | 000000000000                                                           | 0000           |

#### Modification to the behavior at the horizon

Considering the classical solutions and, the classical values of the canonical variables at the horizon are,

$$b = 0, \quad p_b = 0,$$
 (61)

$$c = \mp \frac{\ell_c}{\sqrt{-\beta_c}} \frac{\gamma}{4GM}, \quad \rho_c = 4G^2 M^2.$$
(62)

The effective solutions, however, take on modified values at the horizon. To first order of Taylor expansion in  $\beta_i$ , these values are

$$b = \pm \sqrt{\beta_b} \gamma^2 \sqrt{-2 \ln(\gamma)}, \quad p_b = 2GM\gamma \ell_c \sqrt{2\frac{\beta_b}{\beta_c} \ln(\gamma)}, \tag{63}$$

$$c = \mp \frac{\ell_c}{\sqrt{-\beta_c}} \frac{\gamma}{4GM} \left( 1 - \frac{\gamma^2 \ell_c^2}{32G^2 M^2} \right), \quad p_c = 4G^2 M^2 - \frac{\gamma^2}{8} \ell_c^2.$$
(64)

From here one can see the effective model we introduced also affects the dynamics near the horizon, albeit to a very small degree, given the shear small values of  $\ell_c$  being proportional to the Planck length. It is clear from the expressions above that the modifications to the horizon is not only affected by  $\ell_c$  but also by the Barber parameter  $\gamma$ .

| Introduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|--------------|---------------------|------------------------------------------------------------------------|----------------|
|              |                     |                                                                        | 0000           |
|              |                     |                                                                        |                |

# Final comments





| Introd | luctior |  |
|--------|---------|--|
| 000    |         |  |

Classical solutions

iffective dynamics inspired by Generalized Uncertainty Principle (GUI

Final comments







Figure: Pasquale Bosso, Saeed Rastgoo, Octavio Obregón.

DCI

Black Hole and GUP

| 000 00000 0000000000 <b>000</b> | ntroduction | Classical solutions | Effective dynamics inspired by Generalized Uncertainty Principle (GUP) | Final comments |
|---------------------------------|-------------|---------------------|------------------------------------------------------------------------|----------------|
|                                 | 000         | 00000               | 000000000000                                                           | 0000           |

